

REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504
Vol 24, No. 3 (2023)

http://www.veterinaria.org

Article Received: 03/06/2023 Revised: 04/06/2023 Accepted: 04/07/2023

609

The Importance of Software Documentation in the Development and

Maintenance Phases

Sagar Vishnubhai Sheta1*

1*Software Developer, Lathia Investments LLC

Abstract— This paper focuses on the value of documenting software the relationship between documentation and the

efficiency of the development process and the usefulness of documentation in enhancing maintenance efforts. Research

shows that effective documentation enhances administrative interpretable profile, shortens the time required in problem-

solving, and fosters constructive cooperation, thereby boosting shorter developmental lifecycles and increasing consumer

contentedness. To support elaborate documentation procedures to help achieve sustainable efficiency during software

projects.

Index Terms— Software documentation, Code readability, Team collaboration, User-centered design, Documentation

quality, Maintenance and troubleshooting

I. INTRODUCTION

Software documentation is the process of collecting information on software products and processes, crafted by users,

developers, and maintenance teams through the complexities of management, software usage, and development. The main

act of this software documentation is a roadmap that understands software functionality, operational procedures, and

architecture (Ijiemr, 2024). This can be used for various purposes such as instructing end-users on navigating processes,

developers use the software features by getting inside the codebase, development practices, and design decisions.

Software documentation is important to act as a repository of collective knowledge and is vital for new team members in

reducing their learning curve and understanding of software functionality (Ijirset, 2024). It further improves user

experiences by providing necessary guidance in navigating the software. Moreover, it provides open-source projects

across different locations that help to keep the work asynchronous.

1.1 Aim and Objectives

Aim

The main aim of this research is to examine the importance of comprehensive software documentation in the maintenance

and development phases of software considering Python projects and focus on the impact of team collaboration, code

quality, and long-term maintainability.

Objectives

● To evaluate the role of software documentation in improving software projects and code credibility that helps in team

collaboration of work

● To analyze effective documentation practices that improve troubleshooting problems and maintain codebases

● To investigate the effectiveness of specific Python documentation tools in creating effective maintenance and

accessible documentation for both users and developers.

II. LITERATURE REVIEW

2.1 Effectiveness of software Documentation in enhancing collaboration and code readability

Documentation can be used on software for several reasons, including increasing its readability and improving

communication between the various stakeholders involved in the development process (Ijasem, 2024). It is an essential

document that sets out the working and layout of the code to assist the developers in beginning implementation once they

find out that the code is intended without having to analyze the code itself for this purpose. Observed code is particularly

useful in environments where developers participate on a team basis and where there is usually a constant rotation of

developers joining and leaving a team midway through the development of a particular project (Al-Saqqa et al., 2020).

For both new and existing developers, documentation reduces time spent on learning by having the overall guideline to

follow rather than clearly explaining what to do and where to find it in the codebase, decisions such as the use of some

API, or execution of a complicated algorithm.

http://www.veterinaria.org/
http://www.veterinaria.org/

REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504
Vol 24, No. 3 (2023)

http://www.veterinaria.org

Article Received: 03/06/2023 Revised: 04/06/2023 Accepted: 04/07/2023

610

Figure 2.1: Importance of code documentation

(Source: Qian et al., 2023)

Previous studies have indicated that complete documentation is helpful because it relieves the working capacity of the

developers’ brains helps them understand complex systems quicker, and reduces mistakes about changes (Hutchinson et

al., 2021). It is the documentation that comprises commentaries within the code, descriptions of the functions, and the

explanation of the overall system design presented in a project so that the developers spend much of their time and energy

in an endeavor to understand how the whole program was developed rather than attempting to decipher the relative

structures (Islam, and Ferworn, 2020). Furthermore, when documentation is maintained up-to-date it averts the problem

of knowledge decay which is the loss of important information concerning the project. This can be especially difficult in

projects that take a long time to complete because documentation may not be seen as important during some of the early

phases only to become very important later on for such things as duplicating functionality, identifying problems, and so

on (Akhtar et al., 2022).

2.2 Impact of documentation on troubleshooting and maintenance

Maintenance and fixing also require documentation since it creates an easy-to-understand source especially when a

developer has to deal with a large code base for a long time (Carcary, 2020). Documentation is a knowledge base

containing information about system architecture, and decisions taken in designing and defining the functions of the

particular system, which may be extremely useful when troubles occur or when new teammates appear on the scene while

the authors of the code are absent (Hou et al., 2023). It is discovered that quality documentation that may be poor or out-

of-date means more time spent in maintenance because the developers cannot make heads or tails of code behavior or its

interdependences.

Figure 2.2: Techniques for troubleshooting maintenance

(Source: Li et al., 2024)

http://www.veterinaria.org/
http://www.veterinaria.org/

REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504

Vol 24, No. 3 (2023)

http://www.veterinaria.org

Article Received: 03/06/2023 Revised: 04/06/2023 Accepted: 04/07/2023

611

Code inspection could be the only other thing that is available to a developer – and, again, this is generally a slow and

error-prone process that affects comprehension and even introduces new problems (Zhao, 2020). Reducing these issues

is a matter of adequately documenting your work thus the purpose and rationale of segments of code can be quickly

understood and fixed. Additionally, documentation is more important when transitioning from one system to another, or

when there is a need to change the existing one because the documentation is helpful when guiding the implementation

of change while seeking to have the least impact on the functionality of the system.

Further, documentation is also beneficial for improving troubleshooting because it enhances a systematic approach that

is followed when troubleshooting (Qian et al., 2024). In that way, for instance, by pointing to detailed records of preceding

incidents and their resolutions, developers can prevent work redundancies, optimize the identification of underlying

problems, and apply remedies in a more effective manner (Patacas et al., 2020). This leads, on the one hand, to creating

more dependable software while, on the other hand, providing for more efficient and cost-effective maintenance over

time, all of which contributes to a stable, high-quality product life cycle.

2.3 Effectiveness of documentation in maintaining a gap between end-users and developers

Documentation should therefore be seen as a means of allowing developers to engage directly with end users and make

software more usable and comprehensible between the two categories of these users (Nahar et al., 2022). From the

developers’ perspective, documentation is a guide that shows complex structures and work of the software, its functions,

and principles of construction. For end-users, it is a resource that teaches them how to navigate the software, outlining

how a specific tool works, how to fix problems that may happen, and how to complete activities on their own (Zhao et

al., 2022). Current research shows that detailed and easy-to-follow documentation decreases end-user reliance on helpdesk

service assistance since the users have enough information on the management of minor problems.

Figure 2.3: Technical documentation process

(Source: Thota et al., 2020)

System documentation is well formatted and categorized to include tutorials, FAQs, and troubleshooting guides which

enable the end-users to gain confidence using the software thus enhancing satisfaction (Serban et al., 2020). Moreover,

content segregated by levels of experience like for novices, intermediate users, and advanced users also increases the

usability of complex software by offering information for a variety of users (Xiang and Chin, 2021). Studies prove that a

process of such documentation focused on inclusion can increase the total user experience and, therefore, the rating of the

software.

For the developers, the advantages of creating documents with end users in mind are secondary but quite profound

(Barrane et al., 2021). Regular consumers can search out solid advice they need on their own they do not bother the

developers by contacting them with common mistakes, and those developers can then spend their time fixing and

upgrading their programs instead (Dewi et al., 2021). This balance helps to maintain a substantial working rate of

developers while keeping the general user-to-developer relations in a positive aspect that would meet the requirements of

both parties.

http://www.veterinaria.org/
http://www.veterinaria.org/

REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504

Vol 24, No. 3 (2023)

http://www.veterinaria.org

Article Received: 03/06/2023 Revised: 04/06/2023 Accepted: 04/07/2023

612

2.4 Literature Gap

Although significant attention is paid to documentation as a tool to increase software readability, collaboration, and

maintainability, the opportunities for improving documentation (Spring et al., 2022). It must have to more attention is

needed with regard to techniques to document solutions that are appropriate for a given project based on the users’

experience level and the nature of the project.

III. METHODOLOGY

3.1 Research Approach

The proposal for the study design of this study will draw on the mixed method research design as it offers both

comprehensive and equally valid qualitative and quantitative research findings on the role of software documentation in

the development and maintenance stages (Iwanaga et al., 2022). First, a bibliographic survey of the state of the art in

theories will be carried out to assess the common tendencies and gaps found in the software documentation literature.

This will help in putting down root understandings that will guide the collection of primary data in the study of the wider

context (Marion and Fixson, 2021). After that, since participants from OSS projects would provide primary data, a

quantitative analysis employing Python programming language shall be implemented. Using the Python packages like

Pydoc, Sphinx, and text mining tools the information on the code documentation, code readability, and the frequency of

maintenance updates will be gathered (Tan et al., 2021). The proposed choice of both quantitative and qualitative methods

will further allow for the assessment of documentary practices and comparison with stakeholders’ expectations that will

thus embed the proposed analysis of software documents into both technical and user-oriented perspectives.

3.2 Data collection process

In the data collection process, both external secondary data and primary data which will be collected using Python shall

be used to gather detailed information regarding the role and efficiency of software documentation (Majumdar et al.,

2022). Secondary data will be collected through reviewing literature mainly from journals and technical publications to

set the baseline of best practices, documentation, and current innovations.

Figure 3.1: Process flow of ML algorithms

(Source: Sharma et al., 2021)

Some of the primary data will be gathered using Python to analyze docs and differences in usual documentation patterns

in actual code bases. With the help of Python libraries like Pydoc and Sphinx, it became possible to assess the

comprehensiveness, consistency, and compliance of various aspects of selected open-source projects’ documentation

(García et al., 2020). Furthermore, it is possible to obtain results indicating the average of such characteristics as code

readability, comment density, and the usage of docstrings. Additional analysis can be performed using a text analysis

toolkit in Python to mine information that relates to the quality of the documentation from the developers’ forum or

perhaps GitHub.

http://www.veterinaria.org/
http://www.veterinaria.org/

REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504

Vol 24, No. 3 (2023)

http://www.veterinaria.org

Article Received: 03/06/2023 Revised: 04/06/2023 Accepted: 04/07/2023

613

3.3 Data Analysis

The ‘’Data Analysis Technique’ will use a statistical and machine learning approach to measure the effect of

documentation on development and maintenance (Qian et al., 2023). First, the basic quantitative descriptive measures

and graphical techniques like histograms and kernel density plots will be used to describe and analyze the quality and

distribution of documentation for various projects (Chiozzi et al., 2024). To understand the existent links between the

variables, correlation analysis is going to be used to analyze documentation quality against such factors as maintenance

time, bug fix time, and development time (Abdulkareem and Abboud, 2021). Box plots, for example, will draw out and

compare the maintenance time across levels of documentation quality. Furthermore, the feature correlation matrix

presented as the heatmap will allow the determination of the dependencies between variables that help identify certain

patterns and relationships that are important to documentation (Iwanaga et al., 2022). Regression kinds of options, for

instance, might be used for predictiveness analysis, which will extend the understanding of how quality in the

documentation might predict efficiency in development (Zhang et al., 2023). Collectively, these techniques offer an

integrated perspective to the identified question regarding documentation about software results.

3.4 Evaluation Metrics

The consideration of evaluation metrics in this study has created an effective impact in improving the quality of

documentation on the software development process and also increased maintenance efficiency (Liu et al., 2024). The

evaluation metrics are also responsible for the performance of developed models in providing an appropriate assessment

of this documentation process.

Documentation quality score: It helps to measure the clarity and thoroughness of the documentation on a specific scale

(1-5) to get access to overall effectiveness.

Maintenance time: It can record the average time spent in maintaining the tasks and improve troubleshooting efficiency

for documentation.

Bug Fix time: It also helps to measure the required time to resolve issues and solve problems based on documentation

clarity.

Team collaboration index: It assesses the team cohesiveness by comparing the work of teams and their code integration

analyzing how well the documentation contributed to the productivity of both (Bean et al., 2022). Combined, these

measurements have been an effective scorecard for reviewing the part documentation plays when the goal has been to

make productivity improvements, increase accuracy, promote development and maintenance, and decrease errors.

IV. RESULT AND DISCUSSION

4.1 Result

Fig. 4.1: Load dataset

This figure shows how to import the dataset into the analysis environment of jupyter notebook. The data was gathered

with the help of background research largely based on the effects that software documentation can have on development

and maintenance. These are the quality of documentation, the time taken in maintenance, time taken in development, time

taken in bug fixing, the team collaboration index, the quality of codes, and frequencies of documentation updates (Tjanaka

et al., 2023). The data was collected to assess the level of complementarities between these aspects of documentation and

http://www.veterinaria.org/
http://www.veterinaria.org/

REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504

Vol 24, No. 3 (2023)

http://www.veterinaria.org

Article Received: 03/06/2023 Revised: 04/06/2023 Accepted: 04/07/2023

614

the levels of efficiency and effectiveness in software development and maintenance. This is an important step in the data

preparation process for machine learning, preprocessing, feature engineering, and model construction. A basic

understanding of the structure of data is critical before decoding it and making means so that other critical analyses are

relevant (Liu et al., 2020). The data is then prepared for preprocessing operations such as dealing with the missing values

and the conversion of the categorical features which is so important in aspects of machine learning.

Fig 4.2: Distribution of Documentation Quality

The above image shows the actual distribution of the DocumentationQuality as one of the values indicating the perceived

quality of documentation as found within the dataset. The data collected is secondary data, The documentation quality is

scored out of 5 based on background research done. The distribution is shown in the form of the histogram that presents

number of times a certain quality rating was given. It should also add a kernel density estimate overlay to help visualize

the smoothness and pattern of the data representation (Dehaerne et al., 2022). This visualization is important as it will

give an understanding of the approximate condition of the documentation within the dataset. It also emphasizes where

possible weakness might be, for example, a dense area of lower ratings which may indicate poor documentation

procedures that in turn affect software development and maintenance (Hou et al., 2023). This distribution is a critical

knowledge area when performing analysis on various other variables related to documentation quality.

Fig. 4.3: Maintenance Time by Documentation Quality

http://www.veterinaria.org/
http://www.veterinaria.org/

REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504

Vol 24, No. 3 (2023)

http://www.veterinaria.org

Article Received: 03/06/2023 Revised: 04/06/2023 Accepted: 04/07/2023

615

The effect of quality of documentation on software maintenance time is depicted in Figure 4.3 above. Having gathered

background data from online research, this paper expounds on how the quality of documentation influences the

performance of maintenance work. This relationship is best represented with the help of a box plot wherein the

maintenance time is compared for the high-quality documentation, that is, if it was rated 4 or above, and low-quality

documentation. It is however easy to deduce the differences in central tendencies (median values) and dispersion of the

maintenance times of the two groups from the help of the box plot. It also gives an understanding of variation in

maintenance time, and how the well-documented systems decrease the maintenance activities time and probable time

delay (Golendukhina et al., 2022). This is exemplified in the figure where the relative time spent on maintenance is low

for projects within the second category of documented projects The implication is that good documentation helps to fast-

track the troubleshooting processes and minimize or eliminate errors while handling updates or bug fixes (Golendukhina

et al., 2022). This diagram also proves that massive documentation greatly minimizes the time one spends maintaining

the software systems.

Fig. 4.4: Feature Correlation Matrix

Figure 4.4 shows the correlation matrix of different variables present in the dataset which has highlighted the association

of documentation-related variables with other characteristics of the project. The matrix created takes the form of a heatmap

where colored blocks represent the level of correlation between the given pair of features. It is very easy to detect strong

positive or negative relationships when using CausalPie charts to understand how features like DocumentationQuality,

DevelopmentTimeReduction, MaintenanceTime, and BugFixTime are related (Pavao et al., 2023). High covariance

between Documentation quality and Development time reduction could be interpreted that a high level of documentation

http://www.veterinaria.org/
http://www.veterinaria.org/

REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504

Vol 24, No. 3 (2023)

http://www.veterinaria.org

Article Received: 03/06/2023 Revised: 04/06/2023 Accepted: 04/07/2023

616

implies shorter development cycles. The matrix also shows limited cohesiveness between specific variables and found

that they are likely independent of each other in those fields. This visualization is useful for understanding which issues

should be focused on in software documentation processes. From these relationships, the patterns obtained in the data

analysis can inform better decisions concerning documentation to heighten the robustness of development and

maintenance.

4.2 Discussion

The results of the collected data on software documentation reflect many aspects of the effect of the documentation on

software development and maintenance. It becomes apparent that documenting work efforts is important feedback while

working on a project to ensure that the time and effort to maintain a project are reduced as well as the time taken for

software development (Mastropaolo et al., 2021). Maintenance costs of well-documented systems are usually low since

good documentation enhances a great understanding of a system by the teams working on the system. This enables faster

identifying the issues, less time being spent on fixage, and further quickens updates (Muñoz et al., 2024). Also, there is

an association between the number of times a documentation is updated and improved teamwork. This means that having

updated documentation always keeps all the team members including the new joiners aware of the system as it is, hence

minimizing the confusion that is brought about by outdated information on the system.

The results also show that where documentation quality is high, development time is normally brought down drastically.

Documentation helps a lot because it gives the developer a clear look at what is already in the code and where to look as

well as how to address known problems in a specific area (Lin et al., 2021). On the other hand, poor documentation results

in a lengthened development and maintenance cycle, since the developers spend more time interpreting the system, and

additional time is required in implementing or maintaining software (Wei et al., 2022). These observations suggest that

comprehensive and contemporary software documentation contributes a critical mass to enhance efficiency and avoid

higher operating costs in the long run.

V. CONCLUSION

Most development activities require software documentation that affects the improvement of development and

maintenance. Documentation benefits project time reduces cost, writes well-structured and comprehensible code, and

uses less time for bug fixing. Research indicates and evidence proves that well-commented code results in less

development time, and fewer errors and most importantly, acknowledges the roles of multi-coding as a positive protocol.

However, properly documented software ensures closer working proximity of the developers with the end-users, and that

is a very important aspect of user-centricity.

VI. Acknowledgment

I am pleased to present my report titled "The Importance of Software Documentation in the Development and

Maintenance Phases". I wish to extend my heartfelt gratitude to those who have supported me in completing this research.

I am deeply thankful to those who assisted in gathering the necessary data throughout this study. My sincere appreciation

goes to my professors for their invaluable guidance and insights.

I also want to express my gratitude to my friends whose support and encouragement played a crucial role in achieving

our shared objectives.

I acknowledge the unwavering support of my batch mates, supervisors, and professors throughout this endeavor. Any

shortcomings in this research are entirely my responsibility.

REFERENCES

[1] Ijiemr, 2024. EXPLORE HOW AI CAN BE USED TO CREATE DYNAMIC AND ADAPTIVE FRAUD RULES

THAT IMPROVE THE DETECTION AND PREVENTION OF FRAUDULENT ACTIVITIES IN DIGITAL

BANKING. Available at: https://www.ijiemr.org/downloads/paper/Volume-13/explore-how-ai-can-be-used-to-

create-dynamic-and-adaptive-fraud-rules-that-improve-the-detection-and-prevention-of-fraudulent-activities-in-

digital-banking [Accessed on: 11th November, 2024]

[2] Ijirset, 2024. Artificial Intelligence Ethics: Investigating Ethical Frameworks, Bias Mitigation, and Transparency in

AI Systems to Ensure Responsible Deployment and Use of AI Technologies. Available at:

https://www.ijirset.com/upload/2024/september/2_Artificial.pdf [Accessed on: 11th November, 2024]

[3] Ijasem, 2024. DESIGN AND DEVELOPMENT OF ARDUINO-BASED COLD CONTAINER. Available at:

https://www.ijasem.org/previousissue.php?year=2023&issue=3 [Accessed on: 11th November, 2024]

[4] Al-Saqqa, S., Sawalha, S. and AbdelNabi, H., 2020. Agile software development: Methodologies and trends.

International Journal of Interactive Mobile Technologies, 14(11).

[5] Qian, C., Cong, X., Yang, C., Chen, W., Su, Y., Xu, J., Liu, Z. and Sun, M., 2023. Communicative agents for software

development. arXiv preprint arXiv:2307.07924, 6.

[6] Hutchinson, B., Smart, A., Hanna, A., Denton, E., Greer, C., Kjartansson, O., Barnes, P. and Mitchell, M., 2021,

March. Towards accountability for machine learning datasets: Practices from software engineering and

http://www.veterinaria.org/
http://www.veterinaria.org/

REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504

Vol 24, No. 3 (2023)

http://www.veterinaria.org

Article Received: 03/06/2023 Revised: 04/06/2023 Accepted: 04/07/2023

617

infrastructure. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (pp.

560-575).

[7] Islam, A.K.M.Z. and Ferworn, A., 2020. A Comparison between Agile and traditional software development

methodologies. Global Journal of Computer Science and Technology, 20(2), pp.7-42.

[8] Akhtar, A., Bakhtawar, B. and Akhtar, S., 2022. Extreme programming vs scrum: A comparison of agile models.

International Journal of Technology, Innovation and Management (IJTIM), 2(2), pp.80-96.

[9] Carcary, M., 2020. The research audit trail: Methodological guidance for application in practice. Electronic Journal

of Business Research Methods, 18(2), pp.pp166-177.

[10] Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo, X., Lo, D., Grundy, J. and Wang, H., 2023. Large

language models for software engineering: A systematic literature review. ACM Transactions on Software

Engineering and Methodology.

[11] Li, K., Zhu, A., Zhao, P., Song, J. and Liu, J., 2024. Utilizing deep learning to optimize software development

processes. arXiv preprint arXiv:2404.13630.

[12] Zhao, J., 2020. Quantum software engineering: Landscapes and horizons. arXiv preprint arXiv:2007.07047.

[13] Qian, C., Liu, W., Liu, H., Chen, N., Dang, Y., Li, J., Yang, C., Chen, W., Su, Y., Cong, X. and Xu, J., 2024, August.

Chatdev: Communicative agents for software development. In Proceedings of the 62nd Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers) (pp. 15174-15186).

[14] Patacas, J., Dawood, N. and Kassem, M., 2020. BIM for facilities management: A framework and a common data

environment using open standards. Automation in Construction, 120, p.103366.

[15] Nahar, N., Zhou, S., Lewis, G. and Kästner, C., 2022, May. Collaboration challenges in building ML-enabled

systems: Communication, documentation, engineering, and process. In Proceedings of the 44th International

Conference on software engineering (pp. 413-425).

[16] Zhao, J., Feng, H., Chen, Q. and de Soto, B.G., 2022. Developing a conceptual framework for the application of

digital twin technologies to revamp building operation and maintenance processes. Journal of Building Engineering,

49, p.104028.

[17] Thota, M.K., Shajin, F.H. and Rajesh, P., 2020. Survey on software defect prediction techniques. International

Journal of Applied Science and Engineering, 17(4), pp.331-344.

[18] Serban, A., Van der Blom, K., Hoos, H. and Visser, J., 2020, October. Adoption and effects of software engineering

best practices in machine learning. In Proceedings of the 14th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM) (pp. 1-12).

[19] Xiang, Z.T. and Chin, J.F., 2021. Implementing total productive maintenance in a manufacturing small or medium-

sized enterprise. Journal of Industrial Engineering and Management (JIEM), 14(2), pp.152-175.

[20] Dewi, L.J.E., Wijaya, I.N.S.W. and Seputra, K.A., 2021, March. Web-based Buleleng Regency agriculture product

information system development. In Journal of Physics: Conference Series (Vol. 1810, No. 1, p. 012029). IOP

Publishing.

[21] Barrane, F.Z., Ndubisi, N.O., Kamble, S., Karuranga, G.E. and Poulin, D., 2021. Building trust in multi-stakeholder

collaborations for new product development in the digital transformation era. Benchmarking: An International

Journal, 28(1), pp.205-228.

[22] Spring, M., Faulconbridge, J. and Sarwar, A., 2022. How information technology automates and augments processes:

Insights from Artificial‐Intelligence‐based systems in professional service operations. Journal of Operations

Management, 68(6-7), pp.592-618.

[23] Iwanaga, T., Usher, W. and Herman, J., 2022. Toward SALib 2.0: Advancing the accessibility and interpretability

of global sensitivity analyses. Socio-Environmental Systems Modelling, 4, pp.18155-18155.

[24] Marion, T.J. and Fixson, S.K., 2021. The transformation of the innovation process: How digital tools are changing

work, collaboration, and organizations in new product development. Journal of Product Innovation Management,

38(1), pp.192-215.

[25] Tan, J., Feitosa, D., Avgeriou, P. and Lungu, M., 2021. Evolution of technical debt remediation in Python: A case

study on the Apache Software Ecosystem. Journal of Software: Evolution and Process, 33(4), p.e2319.

[26] Majumdar, S., Bansal, A., Das, P.P., Clough, P.D., Datta, K. and Ghosh, S.K., 2022. Automated evaluation of

comments to aid software maintenance. Journal of Software: Evolution and Process, 34(7), p.e2463.

[27] Sharma, P.N., Savarimuthu, B.T.R. and Stanger, N., 2021, May. Extracting rationale for open source software

development decisions—a study of python email archives. In 2021 IEEE/ACM 43rd International Conference on

Software Engineering (ICSE) (pp. 1008-1019). IEEE.

[28] García, S., Strüber, D., Brugali, D., Berger, T. and Pelliccione, P., 2020, November. Robotics software engineering:

A perspective from the service robotics domain. In Proceedings of the 28th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering (pp. 593-604).

[29] Qian, C., Cong, X., Yang, C., Chen, W., Su, Y., Xu, J., Liu, Z. and Sun, M., 2023. Communicative agents for software

development. arXiv preprint arXiv:2307.07924, 6.

http://www.veterinaria.org/
http://www.veterinaria.org/

REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504

Vol 24, No. 3 (2023)

http://www.veterinaria.org

Article Received: 03/06/2023 Revised: 04/06/2023 Accepted: 04/07/2023

618

[30] Chiozzi, G., Andolfato, L., Argomedo, J., Cano, C.D., Frahm, R., Hofer, J., Jeram, B., Kornweibel, N., Pellegrin, F.,

Schilling, M. and Sommer, H., 2024, July. Status of the ELT control software development. In Software and

Cyberinfrastructure for Astronomy VIII (Vol. 13101, pp. 36-56). SPIE.

[31] Abdulkareem, S.A. and Abboud, A.J., 2021, February. Evaluating Python, c++, javascript, and Java programming

languages based on software complexity calculator (Halstead metrics). In IOP Conference Series: Materials Science

and Engineering (Vol. 1076, No. 1, p. 012046). IOP Publishing.

[32] Iwanaga, T., Usher, W. and Herman, J., 2022. Toward SALib 2.0: Advancing the accessibility and interpretability

of global sensitivity analyses. Socio-Environmental Systems Modelling, 4, pp.18155-18155.

[33] Zhang, Q., Fang, C., Xie, Y., Zhang, Y., Yang, Y., Sun, W., Yu, S. and Chen, Z., 2023. A survey on large language

models for software engineering. arXiv preprint arXiv:2312.15223.

[34] Liu, J., Wang, K., Chen, Y., Peng, X., Chen, Z., Zhang, L. and Lou, Y., 2024. Large language model-based agents

for software engineering: A survey. arXiv preprint arXiv:2409.02977.

[35] Liu, J., Wang, K., Chen, Y., Peng, X., Chen, Z., Zhang, L. and Lou, Y., 2024. Large language model-based agents

for software engineering: A survey. arXiv preprint arXiv:2409.02977.

[36] Bean, B., Bhatnagar, S., Castro, S., Meyer, J.D., Emonts, B., Garcia, E., Garwood, R., Golap, K., Villalba, J.G.,

Harris, P. and Hayashi, Y., 2022. CASA is the Common Astronomy Software Application for radio astronomy.

Publications of the Astronomical Society of the Pacific, 134(1041), p.114501.

[37] Tjanaka, B., Fontaine, M.C., Lee, D.H., Zhang, Y., Balam, N.R., Dennler, N., Garlanka, S.S., Klapsis, N.D. and

Nikolaidis, S., 2023, July. my ribs: A bare-bones Python library for quality diversity optimization. In Proceedings

of the Genetic and Evolutionary Computation Conference (pp. 220-229).

[38] Liu, H., Eksmo, S., Risberg, J. and Hebig, R., 2020, June. Emerging and changing tasks in the development process

for machine learning systems. In Proceedings of the International Conference on software and System Processes

(pp. 125-134).

[39] Dehaerne, E., Dey, B., Halder, S., De Gendt, S. and Meert, W., 2022. Code generation using machine learning: A

systematic review. Ieee Access, 10, pp.82434-82455.

[40] Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo, X., Lo, D., Grundy, J. and Wang, H., 2023. Large

language models for software engineering: A systematic literature review. ACM Transactions on Software

Engineering and Methodology.

[41] Golendukhina, V., Lenarduzzi, V. and Felderer, M., 2022, May. What is software quality for AI engineers? Towards

a thinning of the fog. In Proceedings of the 1st International Conference on AI Engineering: Software Engineering

for AI (pp. 1-9).

[42] Golendukhina, V., Lenarduzzi, V. and Felderer, M., 2022, May. What is software quality for AI engineers? Towards

a thinning of the fog. In Proceedings of the 1st International Conference on AI Engineering: Software Engineering

for AI (pp. 1-9).

[43] Pavao, A., Guyon, I., Letournel, A.C., Tran, D.T., Baro, X., Escalante, H.J., Escalera, S., Thomas, T. and Xu, Z.,

2023. Codalab competitions: An open-source platform to organize scientific challenges. Journal of Machine

Learning Research, 24(198), pp.1-6.

[44] Mastropaolo, A., Aghajani, E., Pascarella, L. and Bavota, G., 2021, September. An empirical study on code comment

completion. In 2021 IEEE International Conference on Software Maintenance and Evolution (ICSME) (pp. 159-

170). IEEE.

[45] Muñoz, A.D., Monje, M.R. and Velthuis, M.G.P., 2024. Towards a set of metrics for hybrid (quantum/classical)

systems maintainability. Journal of Universal Computer Science, 30(1), p.25.

[46] Lin, J., Ma, X., Lin, S.C., Yang, J.H., Pradeep, R. and Nogueira, R., 2021. Pyserini: An easy-to-use Python toolkit

to support replicable IR research with sparse and dense representations. arXiv preprint arXiv:2102.10073.

[47] Wei, A., Deng, Y., Yang, C. and Zhang, L., 2022, May. Free lunch for testing: Fuzzing deep-learning libraries from

open source. In Proceedings of the 44th International Conference on Software Engineering (pp. 995-1007).

[48] Ostadabbas, H., Weippert, H. and Behr, F.J., 2020. Using the synergy of the field for collecting data on-site and qgis

for interactive map creation by alkis® data extraction and implementation in Postgresql for urban planning

processes. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,

43, pp.679-683.

[49] Gao, Z., Xia, X., Lo, D., Grundy, J. and Zimmermann, T., 2021, August. Automating the removal of obsolete TODO

comments. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (pp. 218-229).

[50] Liu, M., Fang, S., Dong, H. and Xu, C., 2021. Review of digital twin about concepts, technologies, and industrial

applications. Journal of manufacturing systems, 58, pp.346-361.

http://www.veterinaria.org/
http://www.veterinaria.org/

