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Abstract: The determinant of the adjacency matrix of the graph is generally called the determinant of the graph. Finding

the determinant of graphs has been a topic of interest in algebraic graph theory. Many methods of reduction and formulae

have been devised over the years. One of the formulae given by F. Harary, to find the determinant of the graph requires

finding all the sesquivalent spanning subgraphs of a graph. The concept of incycle vertices depends on sesquivalent

spanning subgraphs. We have used incycle vertices to find the determinant of bicyclic graphs with a common edge in this

paper. 

Keywords: Sesquivalent, bicyclic graph, determinant, incycle vertex. 

1 INTRODUCTION 

A graph is called a sesquivalent graph if all its components are cycles or edges. A spanning subgraph that is sesquivalent

is called a sesquivalent spanning subgraph[1]. Perfect matching is also a sesquivalent spanning subgraph. The determinant

of a graph 𝐺 whose adjacency matrix is given by 𝐴(𝐺) is given by  

𝑑𝑒𝑡(𝐴(𝐺)) =  ∑(−1)𝑟(𝛤)(2)𝑠(𝛤) 

where 𝑐(𝛤) is the number of components of 𝛤, 𝑟(𝛤) = |𝑉(𝛤)| −  𝑐(𝛤) and 𝑠(𝛤) = |𝐸(𝛤)| - |𝑉(𝛤)| +  𝑐(𝛤) and the

summation is over all sesquivalent spanning subgraphs 𝛤 of 𝐺[2].  This formula was given by Harary F, in 1962. The

concept of incycle vertices depends on sesquivalent spanning subgraphs of a graph. 

Gong et al have worked on finding the determinant of distance matrix of bicyclic graphs[3]. Jianxi et al have studied the

nullity of bicyclic graphs[4]. Ma et al and Supot Sookyang et al have characterised some non-singular cyclic graphs[5][6].

In this paper we attempt to find the determinant of theta type bicyclic graphs using the concept of incycle vertices. 

2 PRELIMINARIES 

A vertex is called an incycle vertex if it lies on some cycle in all possible sesquivalent spanning subgraphs of a graph,

except the perfect matching.  

The graph got from identifying an edge of one cycle with an edge of another cycle, as 𝑒 = 𝑣1𝑣2, is a type of 𝜃 graph[4]. 

We denote the graph with trees attached to this type of 𝜃 graph by 𝜃𝑛
1, where 𝑛 is the number of vertices. In other words,

𝜃𝑛
1 denotes the graph with two cycles having a common edge and trees attached to it, on 𝑛 vertices. 

Figure 2.1 – A theta type bicyclic graph 

 

Theorem 2.1: If 𝐺 ∈ 𝜃𝑛
1 has an incycle vertex that is not in the common edge then the incycle vertex is not unique. In

particular all vertices of that cycle are incyclic. 

Proof: Suppose a vertex of a cycle other than 𝑣1, 𝑣2 is incycle vertex then it lies on a cycle in all sesquivalent spanning

subgraphs of 𝐺, except the perfect matching. Hence that cycle is in every sesquivalent spanning subgraph other than the 

perfect matching. Therefore all its vertices including 𝑣1, 𝑣2 are incyclic. 

Theorem 2.2: If 𝐺 ∈ 𝜃𝑛
1 has no incycle vertex then the perfect matching is the only possible sesquivalent spanning

subgraph and |𝑑𝑒𝑡 (𝐴(𝐺))| ≤ 1.  
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Proof: If 𝐺 has a sesquivalent spanning subgraph with cycle in it then at least 𝑣1and 𝑣2  is an incycle vertex. If 𝑣1 and 𝑣2 

are not incycle vertices then G has no incycle vertices. Hence the perfect matching is the only sesquivalent spanning 

subgraph. If 𝐺 has a sesquivalent spanning subgraph then its determinant is either -1 or 1. If 𝐺 has no sesquivalent 

spanning subgraphs then its determinant is 0. 

Corollary 2.3: If 𝐺 ∈ 𝜃𝑛
1 has no incycle vertices then determinant is 0, 1 or -1 

Corollary 2.4: Let 𝐺 ∈ 𝜃𝑛
1 and let 𝐺 have no incycle vertices. Then 𝐺 is singular if 𝑛 is odd. 

Theorem 2.5: Let 𝐺 ∈ 𝜃𝑛
1 and let 𝐺 have no incycle vertices. Then 𝐺 is singular iff it has no sesquivalent spanning 

subgraph.  

Proof: Let 𝐺 be singular. From theorem 4.2 𝐺 has at most one sesquivalent spanning subgraph. If 𝐺 has a perfect matching 

then 𝐺 is not singular. The converse is obvious. 

 

3 DETERMINANT OF BICYCLIC GRAPHS WITH COMMON EDGE 

Theorem 3.1: Let 𝐺 ∈ 𝜃𝑛
1 and let 𝐺 − {𝑣1, 𝑣2} have a perfect matching. Then 𝐺 has incycle vertices iff all vertices of at 

least one cycle are matched within itself.  

Proof: Let 𝐺 have incycle vertices. Suppose both cycles have at least one vertex matched with a vertex not in cycle. Then 

it is not possible to have any sesquivalent spanning subgraph with cycle. Therefore 𝐺 has no incycle vertices. Conversely, 

let at least one cycle be matched within itself. Then all the vertices of that cycle together with 𝑣1, 𝑣2 forms a cyclic 

component in sesquivalent spanning subgraph of 𝐺. Hence 𝐺 has incycle vertices. 

Corollary 3.2: Let 𝐺 ∈ 𝜃𝑛
1 and let 𝐺 − {𝑣1, 𝑣2} have a perfect matching in which no cycle is matched within itself. Then 

𝐺 has only one perfect matching and |𝑑𝑒𝑡 (𝐴(𝐺))| = 1.  

Theorem 3.3: Let 𝐺 ∈ 𝜃𝑛
1 and let 𝐺 have no incycle vertices. 𝐺 is non - singular iff  𝐺 − {𝑣1, 𝑣2} has a perfect matching 

or there exists a maximum matching of 𝐺 − {𝑣1, 𝑣2} in which exactly one neighbour of 𝑣1 and one neighbour of 𝑣2 are 

unmatched.  

Proof: Let 𝐺 be non-singular. 𝐺 has no incycle vertex. Hence by theorem 4.2, 𝐺 has only one perfect matching. In the 

perfect matching either 𝑣1and 𝑣2 are matched with each other or they are matched with their neighbours, which leads to 

either of the cases. The converse is obvious. 

Theorem 3.4: Let 𝐺 ∈ 𝜃𝑛
1 have incycle vertices and let 𝐺 − {𝑣1, 𝑣2} have no perfect matching. Then 𝐺 is non-singular iff 

𝐺 − {𝑣1, 𝑣2} has a maximum matching in which exactly one vertex in a cycle is unmatched and all vertices of that cycle 

are matched within itself.  

Proof: Let 𝐺  be non-singular. Therefore 𝐺 has at least one sesquivalent spanning subgraph with a cycle. If 𝐺 has an even 

cycle in its sesquivalent spanning subgraph then 𝐺 − {𝑣1, 𝑣2} has a perfect matching. Therefore 𝐺 has an odd cycle in its 

sesquivalent spanning subgraph. This implies that 𝐺 − {𝑣1, 𝑣2} has a maximum matching in which exactly one vertex in 

a cycle is unmatched and all vertices of that cycle are matched within itself.  

Conversely, let 𝐺 − {𝑣1, 𝑣2} have a maximum matching in which exactly one vertex in a cycle unmatched and all vertices 

of that cycle are matched within itself. Then 𝐺 has a sesquivalent spanning subgraph with an odd cycle and hence it is 

non-singular. 

Corollary 3.5: Let 𝐺 ∈ 𝜃𝑛
1 and let 𝐺 − {𝑣1, 𝑣2} have no perfect matching. Then 𝐺 is non-singular iff 𝐺 satisfies either one 

of following cases. 

i) 𝐺 − {𝑣1, 𝑣2} has a maximum matching in which exactly one neighbour of 𝑣1 and one neighbour of 𝑣2 are 

unmatched.  

ii) 𝐺 − {𝑣1, 𝑣2} has a maximum matching in which exactly one vertex in a cycle is unmatched and all vertices of 

that cycle are matched within itself. 𝐺 has odd number of incycle vertices and |det 𝐴(𝐺)| = 2. 

Corollary 3.6: Let 𝐺 ∈ 𝜃𝑛
1. 𝐺 is singular if more than 2 vertices are unmatched in the maximum matching of 𝐺 − {𝑣1, 𝑣2}.  

Corollary 3.7: Let 𝐺 ∈ 𝜃𝑛
1 and let 𝐺 − {𝑣1, 𝑣2} have no perfect matching. The maximum matching of 𝐺 has one 

unmatched vertex. 𝐺 is singular if 𝐺 − {𝑣1, 𝑣2} does not have a maximum matching in which the unmatched vertex lies 

on an odd cycle of 𝐺. 

 The proof follows from case (ii) of corollary 4.10. 

Theorem 3.8: Let 𝐺 ∈ 𝜃𝑛
1.  If 𝐺 − {𝑣1, 𝑣2} has a perfect matching then 𝐺 cannot have odd number of incycle vertices.  

Proof: Suppose 𝐺 has an odd number of incycle vertices. Then there is an odd cycle in its sesquivalent spanning subgraph. 

Therefore 𝐺 − {𝑣1, 𝑣2} does not have a perfect matching which is not possible. Hence 𝐺 does not have odd number of 

incycle vertices. 

Lemma 3.9: Let 𝐺 ∈ 𝜃𝑛
1 be a graph with 2 incycle vertices. Then |det 𝐴(𝐺)| is either 1, 3 or 7. 

Proof: For 𝐺 to have 2 incycle vertices it has to have 2 sesquivalent spanning subgraphs with cycles. There are 3 

possibilities in which 𝐺 has 2 incycle vertices. In all of these possibilities both the cycles in 𝐺 have to be even.  

Case i) If both cycles are of length 4𝑘, 𝑘 ∈ ℕ, 𝐺 has 3 perfect matchings, contributing (−1)
𝑛

2  and 2 sesquivalent spanning 

subgraphs with cycles, contributing (−1)
𝑛

2
+1 × 2 each to determinant. Hence det 𝐴(𝐺) = 3 × (−1)

𝑛

2 + 2 × (−1)
𝑛

2
+1 ×

2 = (−1)
𝑛

2[3 − 4] = (−1)
𝑛

2
+1

. 
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Case ii) If both cycles are of length 4𝑘 + 2, 𝑘 ∈ ℕ, 𝐺 has 3 perfect matchings, contributing (−1)
𝑛

2  and 2 sesquivalent 

spanning subgraphs with cycles, contributing (−1)
𝑛

2 × 2 each to determinant. Hence 𝑑𝑒𝑡 (𝐴(𝐺)) =  (−1)
𝑛

2 +

2 × (−1)
𝑛

2 × 2 = (−1)
𝑛

2[3 + 4] = (−1)
𝑛

2 × 7. 

Case iii) If one cycle is of length 4𝑘 and another is of length 4𝑘 + 2, 𝑘 ∈ ℕ, 𝐺 has 3 perfect matchings, contributing 

(−1)
𝑛

2  and 2 sesquivalent spanning subgraphs with cycles, where one contributes (−1)
𝑛

2 × 2 and another contributes 

(−1)
𝑛

2
+1 × 2 each to determinant. Hence 𝑑𝑒𝑡 (𝐴(𝐺)) = 3 ×  (−1)

𝑛

2 + (−1)
𝑛

2
+1 × 2+(−1)

𝑛

2 × 2 = (−1)
𝑛

2 × 3. 

Theorem 3.10: Let 𝐺 ∈ 𝜃𝑛
1 and let 𝐺 − {𝑣1, 𝑣2} have a perfect matching. 𝐺 is singular iff the number of incycle vertices

is 4𝑘, 𝑘 ∈ ℕ.  

Proof: Let 𝐺 be singular. If 𝐺 has no incycle vertices, then it is non-singular. If 𝐺 has an odd number of incycle vertices 

then also 𝐺 is non-singular. If 𝐺 has 4𝑘 + 2, 𝑘 ∈ ℕ incycle vertices then the determinant is (−1)
𝑛

2
+14. By lemma 4.14, 

determinant is non zero if the number of incycle vertices is 2. Hence the number of incycle vertices is 4𝑘, 𝑘 ∈ ℕ. 

Let 𝐺 have 4𝑘, 𝑘 ∈ ℕ incycle vertices. Then 𝐺 has one sesquivalent spanning subgraph with cycle and 2 perfect

matchings. The determinant is zero and hence 𝐺 is singular. 

Theorem 3.11: Let 𝐺 ∈ 𝜃𝑛
1. 𝐺 has no incycle vertex if more than 1 vertex is unmatched in the maximum matching of

𝐺 − {𝑣1, 𝑣2}.  
Proof: If there are more than 2 unmatched vertices in the maximum matching then 𝐺 has no sesquivalent spanning

subgraph and hence no incycle vertex, by corollary 4.11. For 𝐺 to have incycle vertices, it has to have at least one

sesquivalent spanning subgraph with cycle. All the vertices of at least one cycle has be matched within itself, except the

unmatched vertices. Now if 𝐺 has 2 unmatched vertices, then the two vertices do not lie on the same cycle and hence 𝐺
has no incycle vertex. Hence the theorem. 

Theorem 3.12: Let 𝐺 ∈ 𝜃𝑛
1 with both cycles even and let 𝐺 − {𝑣1, 𝑣2} have no perfect matching. 𝐺 is singular if the

number of unmatched vertices in a maximum matching of 𝐺 − {𝑣1, 𝑣2} is not equal to 2.  

Proof: Suppose 𝐺 has more than 2 unmatched vertices in a maximum matching of 𝐺 − {𝑣1, 𝑣2} then 𝐺 has no sesquivalent

spanning subgraphs and hence no incycle vertices. Consider the case where 𝐺 − {𝑣1, 𝑣2} has exactly one unmatched 

vertex. If the unmatched vertex lies on a cycle then at least one vertex of that cycle is matched outside the cycle. 𝐺 has

no sesquivalent spanning subgraphs and hence is singular. 

Theorem 3.13: Let 𝐺 ∈ 𝜃𝑛
1 with one odd cycle and one even cycle and, let 𝐺 − {𝑣1, 𝑣2} have no perfect matching. 𝐺 has

no incycle vertices if the maximum matching of 𝐺 − {𝑣1, 𝑣2} has more than one unmatched vertices. The vertices of the

even cycle other than 𝑣1 and 𝑣2 cannot be incycle.  

Proof: If 𝐺 − {𝑣1, 𝑣2}  has more than 2 unmatched vertices then 𝐺 is has no sesquivalent spanning subgraph. Suppose 𝐺
− {𝑣1, 𝑣2}  has 2 unmatched vertices. If both vertices lie on the even cycle, 𝐺 has at most one perfect matching and hence

no incycle vertices. If both vertices lie on the odd cycle, at least one vertex has been matched outside the cycle and 

hence 𝐺 has at most one perfect matching and no incycle vertices. If one vertex lies on each cycle then also 𝐺 has no

sesquivalent spanning subgraphs with cycles. If at least one vertex lies outside both cycles, then 𝐺 has at most one perfect

matching. Hence 𝐺 has no incycle vertex. 

Let 𝐺 − {𝑣1, 𝑣2} have one vertex unmatched. If the unmatched vertex lies on the odd cycle and if all the vertices of the

cycle are matched within itself then 𝐺 has sesquivalent spanning subgraph with odd cycle. Hence all vertices of the odd

cycles are incycle and no vertex of the even cycle other than 𝑣1 and 𝑣2 are incyclic. 

Corollary 3.14: Let 𝐺 ∈ 𝜃𝑛
1 and let the maximum matching of 𝐺 − {𝑣1, 𝑣2} have one unmatched vertex. 𝐺 has no incycle

vertices if 𝐺 has no odd cycles.  

Remark 3.15: Let 𝐺 ∈ 𝜃𝑛
1. 

i) If both cycles are odd, then vertices of both cycles can be incycle vertices. The number of incycle vertices cannot be 

2. 

ii) If both cycles are even, then vertices of at most one cycle can be incycle vertices. The number of incycle vertices is

even. 

iii) If one cycle is odd and one cycle is even, then vertices of at most one cycle can be incycle vertices. The number of

incycle vertices cannot be 2. 

In general, if 𝐺 has an even cycle then the vertices of at most one cycle can be incycle vertex. If 𝐺 has an odd cycle the

number of incycle vertices cannot be 2. If 𝐺 has 2 odd cycles there is at most one sesquivalent spanning subgraph

with cycles. 

4 CONCLUSION 

In this paper we have discussed about the determinant of 𝜃 type bicyclic graphs. We have deduced their determinants

using the concept of incycle vertices. Our future topics of interest include finding the determinant of multicyclic graphs

with a common edge and trees attached to it. By using the reduction procedures given by Rara we can also deduce the 

determinant of graphs having cycles with 4𝑘 + 1, 𝑘 ∈ ℕ common edges [7]. 
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